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Plan for Today:

• Markov Decision Processes

• Q-Algorithm: Dynamic Programming 
to learn an optimal policy



Reinforcement Learning: Review
Recall that Reinforcement Learning (RL) involves an Agent  
taking actions in an environment to maximize its rewards. It 
can be considered to be a form of unsupervised ML.

The principal components of an RL system are the following: 

1. Environment:  "physical space" in which agent moves; 
discrete/continuous, deterministic/stochastic, fully/partially 
observable, may contain other agents. 

2. State St : "Memory" of agent preserving information about progress through environment. 
3. Action At : Agent performs actions to "move" through environment and get rewards. 
4. Reward Rt : Scalar representing how much of the overall goal or purpose has been achieved. 
5. Value V(St): How much reward is expected starting from a particular state. 
6. Policy 𝜋(St ,Ot): Given a state and possible observations, what action to take. Learning an 

optimal policy is the entire purpose of the RL system. 
7. Agent: The algorithm that organizes all the activity. 
8. Model: Representation of environment stored in agent. 

ALSO:
There is a tradeoff for the agent between exploiting what is has already learned to gain predictable 
rewards and exploring the environment to find better rewards with possibly some cost.  



Genetic Algorithms as RL

Genetic Algorithms are a special subclass of RL algorithms with the 
following characteristics:

No model
No Value function
Possibly multiple agents
Environment could consist of other agents
Policy = array of numbers
Search is used to create "offspring" from the Agent, by analogy with

biological mutation and crossover



Genetic Algorithms as RL

Framework for learning:

Multiple agents (arrays of numbers) compete with each other, and receive 
immediate rewards.

On the basis of the rewards, the agents can
• Die
• Produce offspring through:

• Mutation: Make small (usually random) changes in the numbers
• Crossover: Breed with other successful agents



Recall:  Markov Chains are directed graphs defined by (Q, A, 𝜋):

𝜋 = [ .6, .4]

OR:

𝜋 = [ 600000, 400000]

q1: City q2: Suburbs
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Markov Decision Processes



Markov Decision Processes

The most important things to remember about Markov Chains are:

• An agent moves from state to state with some probability; and
• The decision about which state to move to is based entirely on the current 

state:  the agent is "memory-less."



Markov Decision Processes

In general, a Markov Decision Process is "a discrete-time stochastic control 
process. It provides a mathmatical framework for modeling decision making 
in situations where outcomes are partly random and partly under the control 
of a decision maker. MDPs are useful studying optimization problems solved 
via dynamic programming." (Wikipedia)

We may translate this into RL terms as:

At time t, an agent is in state St and following 
its policy 𝜋 chooses an action At which moves 
it to a new state St+1 and results in a reward Rt. 
The choice of an action, and the next state 
resulting from this action may be stochastic 
(i.e., involve randomness). 

The goal of the agent is to maximize its total 
rewards. 

States are green circles; actions are red circles; 
rewards are orange wiggly arrows attached to 
actions.   Here, the state resulting from an action 
is determined randomly as shown.  The choice of 
action may be deterministic or stochastic. 



Markov Decision Processes

Formally, a Markov Decision Process is represented by four components:

o S = {S0, S1, ... } is the state space

o A = {A0, A1, ...} is the action space (we may also 
speak of As = the set of actions available 
from state s)

o P(a,s) = Pr( st+1 = s' | st = s, at = a ) is the 
probability that an action a in state s at 
time t leads to state s' at time t + 1. 

o R(s,a,s') = the reward received by taking action a
in state s and transitioning to state s'. 

This is the most general framework, and many RL systems do not use MDPs in their 
full generality, particularly as regards the role of randomness.

Thus:  the "Markov" in the name does not necessarily mean that state transitions are 
made stochastically, but rather refers to the memoryless property. 



Markov Decision Processes

Important considerations:

o Actions may be chosen stochastically, and state transitions 
(given a current state and the action chosen) may be 
stochastic or deterministic. 

o A common approach for choosing actions stochastically, 
called 𝜀 – greedy, is to set a probability 𝜀 and choose 
- an exploitative action (the one with the highest 

known reward) with probability 1- 𝜀; or
- an exploratory action (with unknown or less-certain

rewards) with probability 𝜀.

o Rewards may be
- Immediate – Each transition from a state s to a state s' by means of action a gives

an immediate reward. The optimization goal is to maximize the cumulative
reward by the end. 

- Sparce – Rewards may only be given in a small number of state/action transitions. In the
worst case, a reward may only be given at the end of the entire experiment. 
In this case, it is usual to do "reward shaping" by using a value function (learned
during the experiment, to predict future rewards from the current state and action).  

In diagrams, you may see 
rewards attached to actions, OR 
to states (when an action leads 
to a unique state, so an action = 
choose the next state). 



Markov Decision Processes

Let's look at a simple example, the well-known "cliff walking" problem.

The agent is in some starting location, and wants to get to a goal location by 
walking. The shortest path is to walk along the cliff edge.  What is the best policy? 

Start

Goal



Markov Decision Processes

A simple "grid world" environment might look like this:

Actions:   R

L

U

D

States:  (row, col) in grid

Rewards are attached to states 
because everything is 
deterministic: agent gets 
reward when it moves to a 
state.  

Delayed reward:  shortest path 
yields the optimal reward. 



Markov Decision Processes

A policy can be represented by a mapping from states 
(locations in grid) to actions, and could be shown by 
giving the action to take in each state:

(Assume that if the agent walks off the cliff, the experiment is terminated and starts 
over.) 

Reward of the "safest" 
policy: 100 – 15 = 85.

I goofed: this is supposed to 
have 12 columns instead of 
10.  We'll use 12 later.....



Markov Decision Processes
The optimal policy has a reward of 100 – 10 = 90.

How to find the optimal policy?

Run multiple experiments using 𝜀 – greedy algorithm, starting with 𝜀 = 1.0 
(completely random) and decreasing by a factor of 𝜆 in each iteration of
the experiment. 

How to make this more efficient?

We will "back up" rewards using "rewards shaping" and a value function to tell us 
how good each state is in terms of getting a future reward.



Markov Decision Processes: Q-Learning

The Q-Learning Algorithm (Q = Quality) uses dynamic programming to find the 
optimal (highest reward) path. 

The main data structure is a 2D matrix holding the value function (here called the 
Q-Table). It is a mapping from states and actions to projected rewards (called Q-
Values):

Q(St,a)  ->   Q-values (floats)

and in our cliff-walking example, it would have 

12 * 4 = states

4 actions

so the Q-Table would be a  48 x 4 matrix. 



Markov Decision Processes: Q-Learning

Here is an example of the Q-Table which might give an optimal strategy after 
multiple experiments.  At each time step, take the action with the highest Q-Value:



Markov Decision Processes: Q-Learning

Calculating the Q-Values

A naive approach to finding Q-values would look like this:

1. Initialize all Q-values to -1;
2. For each run:

Choose actions randomly, and if you find the goal or the cliff, indicate the 
Q-Values of the next-to-last state (which would not be estimates, but the
actual reward!). 

Then repeat this, 

Remember that the agent will also 
keep track of the cumulative 
rewards gained so far......



Markov Decision Processes: Q-Learning

The Q Algorithm makes a number of improvements on this naive approach. 

The Q-Table is initilized with all 0 Q-Values, or perhaps with random values.  

Multiple experiments are run using the epsilon-greedy strategy, using a fixed 𝜀
or a diminishing sequence

𝜀, 𝛾𝜀, 𝛾2𝜀, 𝛾3𝜀, ...

(for example, we might use 𝜀 = 1.0 and 𝛾 = 0.99.) 

The epsilon-greedy approach here would consist of the following two possible 
choices of the next action (=transition to a new state):

o Exploitative:  Take the action which has the largest Q-Value; and

o Exploration: Choose equiprobably from among D, U, L, R. 



Markov Decision Processes: Q-Learning

The most important component of the Q-Algorithm
is that dynamic programming is used to update
the Q-values, following the

Bellman Equation (without learning rate):

Q(s,a) =  R + 𝛾 maxa' Q(s',a')

where R is the current cumulative reward gained so far and s' and a' are the possible 
next actions and states.

This equation basically says that you should choose the action which results in the 
maximum increment in the cumulative reward.  

The discount factor  𝛾, with 0 ≤ 𝛾 ≤ 1, expresses how confident we are in the 
estimate:  as we project into the future, our estimate will be used less and less. 
Typical values are between 0.9 and 0.99. 



Markov Decision Processes: Q-Learning

Bellman Equation (with learning rate):

In some cases (e.g., Deep Q-Learning using NNs), it
is necessary to add a "learning rate" 0 ≤ 𝛼 ≤ 1
to the calculation to smooth out the approximation 
of the values:

Q(s,a) = 𝛼 (R + 𝛾 maxa' Q(s',a'))  +  (1- 𝛼) Q(s,a)

which is usually expressed in the compact form: 

Q(s,a) = 𝛼 [ R + 𝛾 maxa' Q(s',a')  - Q(s,a) ]



Markov Decision Processes: Q-Learning
The final version of the Q-Algorithm is therefore as follows:

Choose	parameters	𝛼 and 𝜀 and	(optionally)	𝛾;

Initialize	Q-Table	with	fixed	values	(e.g.,	0)	or	random	values;	

Run	repeated	experiments	until	some	terminal	criterion	is	met:
s	=	Start	state
R	=	0
Choose	action	a	∈ As	using	epsilon-greedy	strategy	to	choose	between:

explotation:	use	action	with	maximum	Q-Value
exploration:	choose	random	action

Take	action a;
Add	immediate	reward	to	R;	
Update	Q-table:

Q(s,a) = 𝛼 (R + 𝛾 maxa' Q(s',a'))  +  (1- 𝛼) Q(s,a)
s	=	s';

A visualization of this algorithm (with very cheesy music) may be found here:

https://youtu.be/Vto8n9C7DSQ

https://youtu.be/Vto8n9C7DSQ


Deep Q-Learning

So what's the problem??    

How would this work for, say, Connect-4?

How big is the Q-Table?

Naive approximation is 364 = 3.43 * 1030  (!!!)

Therefore, a neural network is used to store/approximate/learn the Q-Table.

Most significant applications of reinforcement learning are now done
with deep learning..... 


